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We establish the existence of time-periodic solutions of semi-linear wave equa-
tions on the unit sphere in R3. The problem has been studied previously in (1982,
V. Benci and Fortunato, Ann. Mat. Pura Appl. 132, 215�242) using variational
techniques. Our results here are much sharper: We employ delicate methods of
bifurcation theory (1979, H. Kielho� fer, J. Math. Anal. Appl. 68, 408�420; 1987,
H. Kielho� fer and P. Ko� tzner, J. Appl. Math. Phys. 38, 201�212) combined with
well-known group-theoretic ideas to find branches of small-amplitude solutions.
Precise spatio-temporal patterns of solutions are uncovered as a by-product of the
analysis. Moreover, in certain cases we prove the existence of global solution
branches (in the sense of P. Rabinowitz). � 2000 Academic Press

1. INTRODUCTION

In this paper we establish the existence of time-periodic solutions of
two-dimensional semi-linear wave equations of the form

Lu#utt&2u= g(+, t, x, u) or
(1.1)

Lu#utt+22u= g(+, t, x, u) on R_S2,
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where S2/R3 denotes the unit sphere, ``2'' is the Laplace-Beltrami operator,
``g'' is a nonlinearity, and + is a real parameter. We assume that g(+, t, x, 0)#0,
and we look for free vibration solutions of (1.1), with u(t+P, } )#u(t, } ), for
some fixed period P, in a neighborhood of the equilibrium solution u#0.

Our goals here are similar to those of [6, 7] where the existence of such
solutions was rigorously established for two-dimensional wave equations
(1.1)2 on square domains and on equilateral-triangular domains in R2.
Namely, we employ delicate methods of local bifurcation theory [8] to
find small-amplitude solutions. Detailed properties of solutions are subse-
quently obtained via well known generic, group-theoretic results [5, 14],
viz., precise spatio-temporal patterns are uncovered on individual local
solution branches. The rigorous use of such techniques in wave equations
of the type (1.1) is not standard, and we refer the reader to the Introduction
of [6] for a detailed discussion of the difficulties and their resolution.
Moreover in this paper we can do much more: For (1.1)1 , and when a#
gu(0, t, x, 0) is an integer, we obtain global branches (in the sense of [15])
of periodic solutions. In specific examples, we further establish the spatio-
temporal patterns of solutions on global continua.

Although the use of bifurcation theory for obtaining periodic solutions
of nonlinear wave equations may seem natural (perhaps due its success in
problems governed by ordinary differential equations��going back to [11]),
in fact, it leads to difficult small-divisor problems, [8, 3]. Most known results
from the literature are restricted to one-dimensional, semi-linear wave equa-
tions: In [2] the problem is treated ``in the large'', for fixed linear periods,
via dual variational principles. Results for which the period is treated as a
free parameter are obtained in [3] via Newton iteration in the spirit of
KAM theory.

Our problem was also studied by Benci and Fortunato [1] (for (1.1)1 on
Sn��the unit sphere in Rn+1) via dual variational methods, which were first
employed in [2] for one-dimensional wave equations. In particular, they
obtain critical points ``in the large'' for an associated indefinite functional.
Accordingly their results are also global, i.e., the periodic solutions do not
necessarily belong to a small neighborhood of u#0. However, no (spatio-
temporal) structure of the solutions is revealed.

The outline of this paper is as follows: In Sections 2�4 we present an
abstract summary of the methodology introduced in [8, 10], appropriate
for a general class of problems, which includes (1.1). In Section 2 we study
the abstract linear problem, introducing various function spaces and laying
bare the basic ingredients needed to apply the methods of [8, 10]. In
Section 3 we formulate the abstract nonlinear problem, and in Section 4 we
provide bifurcation theorems for time-periodic solutions. These are of two
types: bifurcation of paths of solutions and results for potential operators,
the later type of which need not yield solution continua, cf. [9].
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In Section 5 we give applications to (1.1). As in [6, 7, and 8], our use
of bifurcation theory, and in particular, our ability to carry out a Liapunov�
Schmidt reduction, depends crucially upon the following two properties: if
a#gu(0, t, x, 0) belongs to a certain subset of the rational numbers (dense
in R), then for corresponding ``admissible linear'' periods P, we have

0<dim N(L&aI )<�, (1.2)

and

(L&aI )&1 is bounded (on the orthogonal complement of the null space),

(1.3)

where L is defined in (1.1). Properties (1.2), (1.3) enable a standard Liapunov
reduction, i.e., no small-divisor problems arise. A general local bifurcation
result for (1.1) is stated in Theorem 5.8.

In Section 6 we obtain general global bifurcation results for (1.1)1 in
the special case when a # Z, cf. Theorem 6.3. Then (L&aI )&1 is not only
bounded as in (1.3), but is also compact. We show by counter example that
this compactness may fail when ``a'' is not an integer. Related compactness
conditions are also at the heart of the results in [1]. To the best of our
knowledge, this is the first application of global bifurcation theory to wave
equations (see also Section 11).

Also, if we fix the period at P=2?, then all bifurcation points a # Z give
rise to global solution continua of (1.1)1 , which may contain the solutions
found in [1].

In Section 7 we establish notation for the systematic exploitation of
symmetry. In Sections 8�10 we obtain detailed results on the spatio-
temporal symmetries of solutions on local and global branches for cases
when the nonlinearity possesses sufficient symmetries. Here we make use of
the vast equivariant-normal-form calculations in [5, 14] for generic
problems with S1 temporal symmetries and O(3) spatial symmetries. As in
[6], our problem is also reversible in time, the additional exploitation of
which enables isolation of solution branches via one-dimensional bifurcation
analysis. In Section 8 we obtain standing waves, which are characterized by
a fixed spatial symmetry while oscillating periodically in time. In Section 9
we find rotating waves, which correspond to rigidly rotating patterns. In
both Sections 8 and 9, if u � g is odd, then we are also able to show that
solutions on certain global continua have nodal curves in the form of great
circles. (In Section 9, these great circles rotate.) Finally in Section 10 we get
discrete-rotating waves��unlike rotating waves, these patterns do not
rotate rigidly, but rather reappear in rotated form at regular fractions of
the period.
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2. THE LINEARIZED PROBLEM

In this section we investigate the linear problem

utt+Au&au= f in R_M,

u(t+P, x)=u(t, x) for all (t, x) # R_M, (2.1)

for some fixed period P>0.

Here M is a two-dimensional, compact, connected, oriented Riemannian
manifold without boundary. A is a real elliptic, self-adjoint, nonnegative
operator of order 2m, m�1, and the number ``a'' is a real parameter. The
function f is defined on the cylinder QP #R (mod P)_M. In this section
we describe the appropriate functional analytic setting to solve (2.1). Since
explicit examples are provided in Section 5 we confine ourselves here to the
essential properties. Let W2, k(M)=H k(M) with norm & &k denote the
Hilbert spaces over M, where we employ the usual notation for Sobolev
spaces, cf. [16]. We assume that

(2.2) A: L2(M) � L2(M) with domain of definition D(A)=H2m(M)
is self-adjoint, nonnegative, and a Fredholm operator of index zero.

If M and the coefficients of A are smooth enough, we have c1 &u&2m+l�
(&Au&l+&u&0)�c2 &u&2m+l for l # N0 and u # H 2m+l(M). Under these
assumptions

(2.3) the operator A possesses a complete orthonormal system of
eigenfunctions [.l], l # N0 , in L2(M) with corresponding real eigenvalues
*l , each of finite multiplicity, 0�*0<*1�*2� } } } , and liml � � *l=�.

Next we define the following real Hilbert spaces over the cylinder QP #
R (mod P)_M:

H r, s(QP)=H r((0, P), H0(M)) & H0((0, P), H s(M))

for r, s # N0 , (2.4)

(see [12], e.g.). Let for (t, x) # R_M, l # N0 , n # Z,
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1

- P
.l(x) for n=0,

�ln(t, x)={ 2

- P
.l(x) cos \2?

P
nt+ for n<0, (2.5)

2

- P
.l(x) sin \2?

P
nt+ for n>0,

be a complete orthonormal system in L2(QP)=H 0, 0(QP). Then

H2, 2m(QP)={u= :

n # Z
l # N0

cln�ln : cln # R,

&u&2
2, 2m#: c2

ln(1+*l+n2)2<�= . (2.6)

Definition (2.6), in turn, can be extended to the following:

H:, :m(QP)={u= :

n # Z
l # N0

cln�ln : cln # R,

&u&2
:, :m#: c2

ln(1+*l+n2):<�= (2.7)

for real :�0.
It is easily seen that for :>;�0 the embedding H:, :m(QP)/H;, ;m(QP)

is compact. Since 2m�2, H2, 2m(QP)/H 2(QP) (continuously), and for
m=1 the space H:, :(QP)=H:(QP) which is the usual Sobolev space of
real order (see [1], Appendix 1, e.g.).

We now study the hyperbolic operator

Lu#utt+Au. (2.8)

If u # H2, 2m(QP), then

(2.9) Lu=�l # N0 ; n # Z cln(*l&(4?2�P2) n2) �ln if u is given as in (2.6),
and L: H2, 2m(QP) � L2(QP) is continuous.

We define

(2.10) L: H2, 2m(QP) � H 2, 2m(QP) with domain of definition D(L)=
[u # H2, 2m(QP) : Lu # H2, 2m(QP)].
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Then

(2.11) L as defined in (2.10) is closed, and D(L) with graph norm is
a Hilbert space.

Now we are ready to formulate problem (2.1):

(L&aI ) u= f, u # D(L), f # H2, 2m(QP). (2.12)

Let

S={(l, n) # N0 _Z : *l&a&
4?2

P2 n2=0= . (2.13)

Then the kernel of L&aI is

N(L&aI )={u= :
(l, n) # S

cln �ln=/D(L). (2.14)

Later in Section 5 and 6, in the context of concrete examples, we shall see
that the parameter ``a'' can be chosen so that the linear operator has two
crucial properties, which we merely state here as hypotheses:

(2.15) N(L&aI ){[0] is finite dimensional, i.e. S=Sa, P=[(l, n):
*l&a&(4?2�P2) n2=0] is nonempty and finite.

|*l&a&(4?2�P2) n2 |�d for some d>0 and for all (l, n) # (N0 _Z)"S.

Proposition 2.1. Under the assumptions of this section and the hypotheses
(2.15), the operator L&aI with domain (2.10) is a Fredholm operator of index
zero.

For the proof we refer to [6, Prop. 2.1]. The same proof yields that

(L&aI )&1 : H2, 2m(QP) & N(L&aI )= � H2, 2m(QP) & N(L&aI )=

is continuous. (2.16)

where = refers to the scalar product in L2(QP).

3. THE NONLINEAR PROBLEM

We study the following nonlinear problem:

utt+Au&a(+)u=h(+, t, x, u) on R_M,
(3.1)

u(t+P, x)=u(t, x) for all (t, x) # R_M.
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The function a: R � R is continuous, and for the nonlinearity h: R_R_
M_R � R we assume that

h(+, t+P, x, u)=h(+, t, x, u),

h, hu # C(R, C2m(R_M_R)), (3.2)

h(+, t, x, 0)=hu(+, t, x, 0)=0 for (+, t, x) # R_R_M.

Since M is two-dimensional, the lifting (2.10) of L from L2(QP) to H2, 2m(QP)
enables us to prove the following proposition:

Proposition 3.1. The substitution operator defined by

H(+, u)(t, x)=h(+, t, x, u(t, x)) (3.3)

maps R_H2, 2m(QP) continuously into H 2, 2m(QP), and it is continuously
Frechet differentiable with respect to u such that

H(+, 0)=0, DuH(+, 0)=0. (3.4)

The proof is similar to that in [6] and it is omitted here.
For our subsequent bifurcation analysis we rewrite problem (3.1) as

G(+, u)#(L&a(+) I ) u&H(+, u)=0,
(3.5)

G: R_D(L) � H2, 2m(QP),

where D(L)/H 2, 2m(QP) (cf. (2.10)) is given the graph norm.

4. BIFURCATION

By virtue of (3.2) we have the trivial solution, i.e., G(+, 0)=0 for all
+ # R. In this section we prove the existence of bifurcating solutions of (3.5)
from the trivial line [(+, 0): + # R]/R_D(L). For convenience we define
a(0)=a, and we henceforth assume that hypotheses (2.15) and (3.2) hold.
The same arguments given in [6, Section 4], yield the following:

(4.1) G as given by (3.5) is continuous and continuously Frechet
differentiable with respect to u, DuG(0, 0)=L&aI is a Fredholm operator
of index zero, and 0 is an isolated eigenvalue of DuG(0, 0).

There is a continuous potential g: R_D(L) � R which is differentiable
with respect to u such that Du g(+, u)v=(G(+, u), v)L2 (QP ) holds for all
(+, u) # R_D(L), v # D(L).
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In order to apply the main theorem of [9] the computation of the so-called
crossing number is in order. By definition (see [9]) the crossing number
/(DuG(+, 0), 0) counts how many eigenvalues of Du G(+, 0)=L&a(+) I
leave the left complex half-plane through 0 when the parameter + varies
from negative to positive values.

The eigenvalue of DuG(+, 0)=L&aI&(a(+)&a)I near zero is given by
a(+)&a, having the multiplicity dim N(L&aI ). Here the multiplicity is the
geometric multiplicity, which is due to the fact that L&aI is self-adjoint in
L2(QP) (cf. (2.9)). Assuming that

a: R � R is strictly monotonic for + near 0, (4.2)

we have

/(DuG(+, 0), 0)=\dim N(L&aI ){0. (4.3)

Thus all conditions from [9] are fulfilled. Accordingly we have the following
theorem.

Theorem 4.1. Under the hypotheses (2.2), (2.15), (3.2), and (4.2) the point
(0, 0) # R_D(L) is a bifurcation point of nontrivial solutions of G(+, u)=0.

Theorem 4.1 is quite general in that the finite dimension of the kernel
N(L&aI ) is arbitrary. However, it has two drawbacks: the bifurcating
solutions need not form a curve or even a continuum in R_D(L); the
structure of the solutions (in terms of the modes (l, n) in S, cf. (2.13)) is
unknown. It simply guarantees that (0, 0) is a cluster point of nontrivial
solutions (+, u) of (3.5).

However, if the kernel N(L&aI ) is two-dimensional, we get the following
special case.

Theorem 4.2. If, under the assumptions of Theorem 4.1, we have
dim N(L&aI )=2, i.e., if

N(L&aI )=span {.l0
(x) cos

2?n0

P
t, .l0

(x) sin
2?n0

P
t= , (4.4)

if a(+) is continuously differentiable with a$(0){0, and if, in addition to
(3.2), we have h+ , h+u # C(R, C 2m(R_M_R)), then there is a continuously
differentiable curve of nontrivial solutions of (3.5), denoted [(+(=), u(=)): |=|<$]
/R_D(L), emanating from the trivial solution branch at (+(0), u(0))=(0, 0),
where

u(=)(t, x)==.l0
(x) cos

2?n0

P
t+o( |=| ) (4.5)
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and o( |=| ) is a perturbation in the H2, 2m(QP)-topology. Moreover, t [ u(=)(t, x)
is even, and all nontrivial solutions of (3.5) in a sufficiently small neighborhood
of (0, 0) are given by this solution path (to within an arbitrary phase shift in t).

Proof. Working in R_[u # D(L) : u(&t, x)=u(t, x)] the kernel of
Du G(0, 0)=L&aI is one dimensional and the bifurcation theorem at
simple eigenvalues [4] applies (see also [8, Theorem 2.4]). K

Remark 4.3. If a=a(0) is an eigenvalue *l of A, and if h does not
depend on t, then we get bifurcation of stationary, i.e. time-independent
solutions of (3.1) whether or not the hypotheses (2.15) are fulfilled. Indeed,
by (2.2) the methods of [9] apply, since the crossing number is
\dim N(A&aI ){0 in this case. However, in this paper we do not study
these stationary solutions in detail.

Remark 4.4. Under the assumption of more regularity of the coef-
ficients of A and of the function h (cf. (3.2)), the solutions of (3.5) in
R_D(L) are in fact classical solutions of (3.1). For a proof we refer to
[6, Section 4].

5. EXAMPLES

In this section we explicitly verify our hypotheses of the first sections, in
particular (2.2) and (2.15). We consider the Laplacian A=&2 and the
biharmonic operator A=22 on M=S 2, which is the unit sphere in R3.
Then it is well known that (2.2) is fulfilled with m=1 and m=2, respec-
tively, and the eigenvalues are given by

*l=l(l+1) and *l=(l(l+1))2, (5.1)

respectively, for l # N0 .

The multiplicity of *l is 2l+1 and the corresponding eigenfunctions are
so-called spherical harmonics which are given in spherical coordinates
(x1 , x2 , x3)=(sin : cos ;, sin : sin ;, cos :) # S2 as follows:

.l, h(x1 , x2 , x3)=.~ l, h(:, ;)

Pl(cos :) for h=0,

={Pl, h(cos :) cos h; for h>0, (5.2)

Pl, &h(cos :) sin(&h;) for h<0,

: # [0, ?], ; # [0, 2?), h=&l, ..., l, l # N0 .

410 GUGG ET AL.



The functions Pl are the Legendre polynomials and Pl, h , h=1, ..., l, are
the associated Legendre functions (see [5], e.g.). (There is an obvious
change of notation in (5.1), (5.2) compared to (2.3))

First we address the hypotheses given in (2.15) for A=&2.

Proposition 5.1. Let a=p�q, p # Z, q # N, a{&1
4 , and let S (cf. (2.13))

be nonempty, i.e. (l0 , n0) # S and assume that n0 {0. If there is some r0 # N
such that

q2*l0
& pq=r2

0 , (5.3)

then S is finite.

Proof. Since (l0 , n0) # S with n0>0 and *l0
&a=r2

0 �q2>0 we have

P=P0=
2?n0

- *l0
&a

>0. (5.4)

Then the characteristic equation defining the set S is equivalent to

q2n2
0*l&(q2*l0

& pq) n2= pqn2
0 , (5.5)

and using *l=l(l+1) and assumption (5.3) this becomes

\qn0 \l+
1
2+&r0n+\qn0 \l+

1
2++r0 n+= pqn2

0+
q2n2

0

4
. (5.6)

It suffices to restrict Eq. (5.6) to n0>0 and to (l, n) # N0 _N0 . By assump-
tion a=p�q{&1

4 the right hand side of (5.6) is nonzero and this implies
that |qn0(l+ 1

2)&r0n|� 1
2 and

qn0 \l+
1
2++r0n�2 \ pqn2

0+
q2n2

0

4 +=C0 (5.7)

for all (l, n) # S & (N0_N0).
By qn0>0 and r0>0 (5.7) admits only finitely many solutions. We remark

that (5.7) provides also an a priori estimate for (l, n) # S & (N0_N0). K

Remark 5.2. If a=&1
4 then S is infinite if it is nonempty, i.e., if there

is some (l0 , n0) # N0_Z such that P=2?n0 �(l0+ 1
2).

Definition 5.3. For A=&2 let the period P0 be given as in (5.4). A
rational number a=p�q{&1

4 is admissible for P0 if (5.3) is fulfilled for
some r0 # N. In this case P0=2?n0q�r0 , i.e., P0 is a rational multiple of 2?.
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Proposition 5.4. The set of all numbers a # Q"[&1
4] which are admissible

for some period of the form (5.4) is dense in R.

The proof is similar to that in [6].

Theorem 5.5. For A=&2, let a # Q"[&1
4] be admissible for some period

P0 of the form (5.4). Then both hypotheses given by (2.15) are fulfilled.

Proof. For P=P0 of the form (5.4) the pair (l0 , n0) is in S. By
Proposition 5.1 admissibility of a=

p
q{& 1

4 for P0 implies that S is finite.
Finally, for d=1�n2

0q2

}*l&a&
4?2

P2
0

n2 }=d |q2n2
0*l&r2

0n2& pqn2
0 |�d (5.8)

for all (l, n) # (N0_Z)"S. K

Next we take a different point of view: we prescribe P=2?�k for some
fixed k # N and we ask for which a # R hypotheses (2.15) are fulfilled for
S=Sa, 2?�k . Since the characteristic equation defining S is

*l&a&k2n2=0 for (l, n) # N0 _Z (5.9)

we see that S{< only if a # Z.

Theorem 5.6. For a period P=2?�k, k # N, and any a # Z such that
Sa, P {< the hypotheses (2.15) are fulfilled.

Proof. S=Sa, P contains (l, 0) if and only if a=*l , and if S contains
any other (l, n) such that n>0 then (5.9) gives (5.3) with a= p, q=1, and
r0=kn # N. Therefore, by Proposition 5.1, S is finite. Furthermore, since
a # Z, we have |*l&a&k2n2|�1 for all (l, n) # (N0 _Z)"S, i.e. we may
choose d=1 in (2.15). K

Remark 5.7. The number a # Z is admissible for P=2?�k in the sense
of Definition 5.3 if Sa, P contains some (l, n) with n{0. If Sa, P=[(l, 0)],
which implies a=*l is an eigenvalue of A, then a period P0 of the form
(5.4) does not exist for which ``a'' is admissible. Nonetheless the hypotheses
(2.15) are fulfilled (cf. also Remark 4.3).

We are now ready to apply Theorem 4.1 to the problem

utt&2u= g(+, t, x, u)=a(+) u+h(+, t, x, u) on R_S 2,
(5.10)

u(t+P, x)=u(t, x).
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Theorem 5.8. Let h: R_R_S2_R � R satisfy (3.2) with m=1 and
assume that a: R � R is continuous and satisfies (4.2) with a(0)=p�q{&1

4

admissible in the sense of Definition 5.3 for some period P0 . Then (+, u)=
(0, 0) is a bifurcation point of nontrivial solutions of (5.10) with P=P0 in a
weak sense, i.e., (+, u) # R_D(L). (See also Remark 4.4).

Example 5.9. The number a(0)=a=11 is admissible for the period
P0=2? with r0=1. The solution set S of the characteristic equation is

S=[(3, 1), (4, 3), (11, 11), (3, &1), (4, &3), (11, &11)] and
(5.11)

dim N(L&11I )=78,

since the multiplicity of *l=l(l+1) is 2l+1.

For a proof use the estimate (5.7).
Next we investigate A=22.
The eigenvalues *l of the biharmonic operator A=22 on M=S2 are

squares of an integer, cf. (5.1). Therefore the characteristic equation defin-
ing the set S is treated in the same way as in [6]. We summarize: If a
rational number a=p�q{0 is admissible for P0 in the sense of Definition
5.3, then the set S is finite. With that modification Theorem 5.8 holds for

utt+22u= g(+, t, x, u)=a(+) u+h(+, t, x, u) on R_S2,
(5.12)

u(t+P, x)=u(t, x),

if h satisfies (3.2) with m=2.
In order to apply Theorem 4.2 to (5.10) and (5.12), the dimension of the

null space must be reduced. A first step in that direction uses the idea of
a minimal period.

If not stated otherwise, we assume that A=&2 or A=22 in the sequel.

Proposition 5.10. Let a=p�q be admissible for some period P0 , with
``a'' not an eigenvalue of A. Then the set of all periods for which ``a'' is also
admissible contains a minimal period, P1=2?�- *l1

&a, where *l1
is an

eigenvalue of A. Moreover, for P=P1 , dim N(L&aI ) is equal to twice the
multiplicity of *l1

as an eigenvalue of A, i.e., N(L&aI )=span[.l1
(x)_

cos(2?�P)t, .l1
(x) sin(2?�P) t: (A&*l1

I).l1
=0]. In view of (5.2), dim N(L&aI)

=2(2l1+1).

The proof is the same as that of Proposition 5.5 in [6].
The next proposition is converse to Proposition 5.10.
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Proposition 5.11. Let *l1
>0 be an eigenvalue of A. Then there exists

an admissible number ``a'' for the period P1=2?�- *l1
&a, which is minimal

among all periods for which the number ``a'' is also admissible.

Proof. First let A=&2 and *l1
=l1(l1+1), l1 # N. We choose a= p=

l1 (and q=1). Then ``a'' is admissible for P1 with r1=l1 # N. Assume that
there is some smaller period P2 for which ``a'' is admissible. Then the eigen-
value *l2

defining P2 is greater than *l1
and l2(l2+1)&l1 is a square,

contradicting l2
2<l2(l2+1)&l1<(l2+1)2.

If A=22 then *l1
=(l1(l1+1))2 and a=2 - *l1

&1 is admissible for P1

with r1=l1(l1+1)&1 # N. The assumption that there is some smaller
period for which ``a'' is admissible, too, is contradictory, as shown in the
proof of Proposition 5.6 in [6]. K

Remark 5.12. The choice a=l1 for A=&2 does not necessarily fulfill
the additional requirement of Proposition 5.10. Obviously l1=l(l+1) is
an eigenvalue of A for any l # N. But there is a second choice of ``a'' in
Proposition 5.11 for A=&2 such that ``a'' is not an eigenvalue of A: the
number a=(8l1&1)�4 is admissible for P1 with r1=2(2l1&1). We omit
the calculation that P1 is minimal.

The choice a=2 - *l1
&1 is always good for A=22 : the eigenvalues

(l(l+1))2 of A are even whereas a=2 - *l1
&1 is odd and therefore not

an eigenvalue of A.

Remark 5.13. Let a=
p
q be admissible for some period P0 with ``a'' not

an eigenvalue of A. If (l1 , \n1) # Sa, P0
and if n1 does not divide all other

n for which (l, n) # Sa, P0
then for P=P1=P0�n1=2?�- *l1

&a, the same
conclusion as in Proposition 5.10 holds. A simple argument proves that
Sa, P1

=[(l1 , \1)]. For the maximal |n1 | we obtain the minimal period of
Proposition 5.10.

If we choose the parameters a=a(0) and P=P1 according Propositions
5.10, 5.11, or Remark 5.13 we cannot yet apply Theorem 4.2 because the
multiplicity of *l1

is 2l1+1>1 for l1 # N. Of course this degeneracy is due
to spherical symmetry, the exploitation of which we postpone until Section
7, where Theorem 4.2 is applied.

6. GLOBAL BIFURCATION FOR THE NONLINEAR
WAVE EQUATION

In this section we obtain global bifurcation results [15] for the nonlinear
wave equation (3.1) on the sphere S2 with A=&2. For this we require an
additional hypothesis:
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(6.1) a=a(0) is an integer and admissible for some period P0=
2?�- *l0

&a, and Sa, P0
=[(l0 , \n0)] for some (l0 , n0) # N0_N.

If we choose the minimal period according Proposition 5.10, or if we
obtain a period as in Remark 5.13, then (6.1) can be fulfilled for any
admissible integer ``a'' which is not an eigenvalue of A.

Proposition 6.1. For any number b # R"Z, the operator L+bI : D(L)/
H2, 2(QP) � H2, 2(QP), with P=P0 as given in assumption (6.1), is bijective,
and (L+bI )&1 : H2, 2(QP) � H 2, 2(QP) is compact.

Proof. By virtue of (2.6) and (2.9) we have

(L+bI )u= :

n # Z
l # N0

cln \*l+b&
4?2

P2 n2+ �ln , (6.2)

and (6.1) implies that P=2?�r0 for some r0 # N. Since *l # N0 and
(4?2�P2) n2=r2

0 n2 # N0 , the assumption b # R"Z implies the injectivity of
L+bI. The Fredholm property of L+bI (cf. the proof of Proposition 2.1)
then yields bijectivity and the continuity of (L+bI )&1, cf. (2.16). We now
sharpen that result as follows: Let f # H2, 2(QP), f=�l # N0; n # Z dln�ln , and
(L+bI )u= f. Then

u= :

n # Z
l # N0

cln�ln with cln=dln�(*l+b&r2
0n2). (6.3)

The proof of Lemma 4.3 in [1] implies that

|*l&r2
0 n2 |� 1

2 (l+r0 |n| ) for all l # N0 , n # Z. (6.4)

Since |b|� 1
4 (l+r0 |n|&1) for all but finitely many l # N0 and n # Z we get

|*l + b & r2
0n2 | � 1

2 (l + r0 |n| ) & 1
4 (l + r0 |n| & 1) = 1

4 (1 + l + r0 |n| ) for
almost all l # N0 and n # Z and (see (2.6), (2.7))

&u&2
3, 3= :

n # Z
l # N0

d 2
ln

(1+*l+n2)3

(*l+b&r2
0n2)2

�C1 : d 2
ln(1+*l+n2)2 1+*l+n2

(1+l+r0 |n| )2

�C2 & f &2
2, 2 . (6.5)

Since the embedding H3, 3(QP)/H2, 2(QP) is compact (cf. Section 2) the
proof of Proposition 6.1 is complete. K
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Remark 6.2. We now show by a counterexample that the compactness
of (L+bI )&1 is lost if we give up assumption (6.1). Choose a=a(0)=p�q
= 7

4 . Then, by q2*1& pq=16 } 2&7 } 4=22=r2
0 , the number ``a'' is admissible

for P0=2?�- *1& 7
4=4? which is minimal. We choose f =�l # N0; n # Z dln�ln

such that dln=0 for all n{2l+1 and dl, 2l+1{0 for infinitely many l # N0 .
Then, for n=2l+1, *l+b&(4?2�P2

0) n2=l2+l+b& 1
4 (2l+1)2=b& 1

4 .
Accordingly, from (6.3) we find u= f�(b& 1

4) for any b{ 1
4 ; in particular, u

has precisely the same regularity as f.

Next we rewrite (3.5) as follows:

G(+, u)#(L&a(+) I) u&H(+, u)=0 �

(L+bI ) u&((a(+)+b) u+H(+, u))=0 �
(6.6)

u&(L+bI )&1 ((a(+)+b) u+H(+, u))=0 �

u&F(+, u)=0 for (+, u) # R_H2, 2(QP).

In view of Propositions 3.1 and 6.1, we conclude that the mapping
F : R_H 2, 2(QP) � H2, 2(QP) as defined in (6.6) has the following property:

(6.7) F : R_H2, 2(QP) � H2, 2(QP) is completely continuous.

Thus the hypotheses of Rabinowitz' global bifurcation alternative are
fulfilled (cf. [15]) provided the Leray�Schauder index of I&F(+, } ) or of
I&DuF(+, 0) changes at +=0. Under assumption (6.1) we have a
(2l0+1)-dimensional kernel of I&Du F(0, 0)=I&(L+bI )&1 (a(0)+b) I
when we restrict (6.6) for P=P0 to R_[u # H2, 2(QP) : u(&t, x)=u(t, x)].
If the function ``a'' is strictly monotonic for + near 0 (cf. (4.2)), due to the
odd-dimensional kernel the Leray�Schauder index changes at +=0, and
we can state the following theorem.

Theorem 6.3. Let the integer a=a(0) be admissible for some period
P=P0 such that (6.1) is fulfilled. Assume furthermore the hypotheses of
Theorem 4.1. Then the point (0, 0) # R_H2, 2(QP) is a bifurcation point of a
continuum CP of solutions of (6.6), and therefore of (5.10), having at least
one of the following properties:

(i) CP is unbounded in R_H2, 2(QP) or

(ii) CP is connected to some (+0 , 0){(0, 0) in R_H2, 2(QP).

All solutions on CP are even functions of t # R (mod P), and arbitrary phase
shifts in t create new solutions connected to CP .
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Corollary 6.4. Under the assumptions of Theorem 6.3, if 0<|a(0)&a(+)|
<1 for + # R"[0] then the global continuum fulfills alternative (i): CP is
unbounded in R_H 2, 2(QP) � H2, 2(QP).

Proof. If CP meets the trivial solution line at some (+0 , 0) then (by the
implicit function theorem) necessarily dim N(L&a(+0) I )>0. But b=
&a(+0) # R"Z implies by Proposition 6.1 that L&a(+0)I is bijective such
that alternative (ii) is ruled out. K

Remark 6.5. The same proof as for Proposition 6.1 shows also that

(L+bI )&1 : H:, :(QP) � H:, :(QP) (6.8)

is compact for all :�0 (cf. (2.7)).
If the function h defining the nonlinearity H (cf. (3.2)) possesses addi-

tional regularity, then Eq. (6.6), u&F(+, u)=0, is well defined for (+, u) #
R_H:, :(QP) for :>2. By Sobolev's embedding theorem, the solutions
given by Theorem 6.3 in R_H :, :(QP) are classical solutions of (5.10)
or (5.12) provided :>7�2 (recall that dim M=2). Thus h, hu , h+ #
C(R, C4(R_S 2_R)) are sufficient to obtain classical solutions of (5.10).

Example 6.6. We now apply our general results to the problem

utt&2u=+u+h(+, x, u) on R_S 2,
(6.9)

u(t+P, x)=u(t, x).

For a(+)#+ we obtain clearly a(0)=0, which is too restrictive. Accordingly
we change our notation slightly (via a parameter shift) and call +=a a bifurca-
tion point of (6.9) if, in our previous framework, (+, u)=(0, 0) is a bifurcation
point for (5.10) with a(+)#++a.

If we admit all ``linear'' periods P=P0 of the form (5.4) then, by
Proposition 5.4, Theorem 5.5, and Theorem 4.1, the entire real line consists
of bifurcation points of (6.9), in this sense that each (a, 0) # R_D(L) is a
cluster point of nontrivial solutions of (6.9) for some linear period.

Next we fix the period at P=2?. By Theorem 5.6 the hypotheses (2.15)
are fulfilled provided Sa, 2? {<, which, in turn, is true for a=*l&n2 for
any (l, n) # N0_Z, i.e., for all a # Z. Thus, by an application of Theorem 4.1,

(6.10) Z is the set of all bifurcation points of (6.9) for P=2?.
We get more information about the nature of the bifurcating solutions
when we apply Proposition 5.10. According to Remark 5.7, if a=*l&n2 is
not an eigenvalue of A=&2, then Proposition 5.10 guarantees a minimal
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period P1=2?�- *l1
&a=2?�r1 for some r1 # N. Recall that a # Z, and

without loss of generality, q=1 in (5.3). Admissibility then implies *l1
&a=r2

1 .
On the other hand, by Remark 5.7 the number a # Z is admissible for

any period 2?�k provided Sa, 2?�k {<. Therefore P1=2?�r1 is also the
minimal period among all periods 2?�k such that Sa, 2?�k {<. Obviously
P1 -periodicity implies 2?-periodicity. Theorem 6.3 then yields:

(6.11) if a # Z is not an eigenvalue of A=&2 then ``a'' is a bifurca-
tion point of a global solution continuum of (6.9) having period P1=2?�r1

which is the minimal period in N(L&aI ) with D(L)/H2, 2(Q2?).

Finally, if a # Z is an eigenvalue *l=l(l+1) of A=&2, then we can
improve Remark 4.3: due to the odd dimension, 2l+1, of N(A&aI ) we
can apply the global result of [15] for stationary solutions. To summarize,

(6.12) all bifurcation points a # Z give rise to global solution continua
of (6.9) for P=2?.

Finally, using the proof of Proposition 5.11, if we choose a=l1 # N, and
if l1 is not an eigenvalue of A=&2, then global solution continua of (6.9)
with period P1=2?�l1 bifurcate at (l1 , 0). Moreover, the period P1=2?�l1

is minimal in N(L&l1I ). We illustrate this for Example 5.9: The minimal
period in N(L&aI ) is 2?�11, and at a=11 a global continuum of 2?�11-
periodic solutions bifurcates.

The period 2?�3 is not minimal in N(L&11I ) for Example 5.9, but by
an application of Remark 5.13, a global continuum of 2?�3-periodic solu-
tions bifurcates at a=11, too.

Finally we mention the results of [1] for problem (6.9) with P=2?. The
existence results there are obtained by variational methods such that a
parameter + is not needed. On the other hand the conditions on the non-
linearity h are much more restrictive. A direct comparison of the results in
[1] and our results is therefore not possible. Quite likely the solutions
found in [1] are on our global solution continua.

7. EXPLOITATION OF SYMMETRY

We continue our study of (3.1) on M=S2 with A=&2 or A=22.
These problems admit certain symmetries the exploitation of which help to
decrease the dimension of the kernel N(L&aI ) and hence enable a detailed
local analysis. More on our use of group theory and the related notation
may be found in [5] or briefly in [13], Appendix A.

418 GUGG ET AL.



Let O(3) be the orthogonal group on R3 which leaves the unit sphere S2

invariant. For all functions defined on S2 we have the natural action of any
_ # O(3) defined by

_u(t, x)#u(t, _&1x), (t, x) # R (mod P)_S 2. (7.1)

The actions

T} u(t, x)#u(t&}, x) for all } # R (mod P),
(7.2)

Eu(t, x)#u(&t, x)

together with (7.1) then define a representation of O(2)_O(3) on H2, 2m(QP).
Rewriting (5.10) or (5.12) abstractly via (3.5) as G(+, u)=0 we can easily
etablish the equivariance of G(+, } ) with respect to any subgroup 1 of
O(2)_O(3) as follows:

Proposition 7.1. Let 1 be a subgroup of O(2)_O(3) and 71 /O(3) be
its projection on O(3). If h as given by (3.2) does not depend upon t and if
h is invariant under 71 , i.e.

h(+, _x, u)=h(+, x, u) for all _ # 71 , x # S2, +, u # R, (7.3)

then G(+, } ): D(L)/H 2, 2m(QP) � H2, 2m(QP) is 1-equivariant, i.e.

G(+, #u)=#G(+, u) for all # # 1, (+, u) # R_D(L). (7.4)

Definition 7.2. Let 1 be a subgroup of O(2)_O(3). The fixed-point
space of 1 is defined by

Fix1 (H 2, 2m(QP))#[u # H2, 2m(QP) : #u=u for all # # 1]. (7.5)

Since O(2)_O(3) is compact, it is well known that Fix1 (H2, 2m(QP)) is
itself a Hilbert space with the inner product inherited from H2, 2m(QP).
Moreover, a direct consequence of (7.4) is that

G: R_(D(L) & Fix1 (H 2, 2m(QP))) � Fix1 (H 2, 2m(QP)). (7.6)

In other words, we can systematically find solutions of G(+, u)=(L&a(+) I) u
&H(+, u)=0 having specified symmetries by restricting G as in (7.6). Clearly,
the Frechet derivative DuG(0, 0)=L&aI maps D(L) & Fix1(H2, 2m(QP)) into
Fix1 (H2, 2m(QP)), and by equivariance (7.4) of G(+, } ) it commutes with any
# # 1. This, in turn, implies that the Fredholm property of DuG(0, 0) is
preserved, and (4.1) is valid for the mapping G as given by (7.6). Applying
our general bifurcation results to the restriction (7.6) we obtain the follow-
ing result:
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Theorem 7.3. Assume the hypotheses of Theorems 4.1, or 4.2 with

dim(N(L&aI ) & Fix1 (H 2, 2m(QP)))>0 or

dim(N(L&aI ) & Fix1 (H 2, 2m(QP)))=1, respectively.

Then nontrivial solutions or a curve of solutions, respectively, of G(+, u)=0
bifurcate from the trivial solution at (0, 0). If the hypotheses of Theorem 6.3
hold, and if

dim(N(L&aI ) & Fix1 (H2, 2(QP))) is odd,

then the bifurcating solutions form a global continuum.
In all cases the bifurcating solutions are contained in R_Fix1 (H2, 2m(QP)).

Remark 7.4. The restriction to the even functions in the proofs of
Theorems 4.2 and 6.3 can now be restated from a symmetric point of view
as follows: For 1 $=[I, E]_[I]$Z2_[I]/O(2)_O(3) we get

Fix1 $(H 2, 2m(QP))=[u # H2, 2m(QP) : u(&t, x)=u(t, x)], (7.7)

i.e. we assume 1 $/1 in the last two cases of Theorem 7.3. The reduction
of the dimension of the null space of L&aI to one, however, requires
additional spatial symmetries in the group 1.

All solutions (+, u) given by Theorem 7.3 are in R_Fix1 (H2, 2m(QP)).
Therefore, the isotropy subgroup of these solutions, defined by

7u=[# # O(2)_O(3) : #u=u], (7.8)

clearly contains the group 1 but equality 1=7u does not necessarily hold.
For local solutions (in a sufficiently small neighborhood of the bifurca-

tion point), something more definitive can be said, which we now summarize
below.

All our local bifurcation results (Theorems 4.1 and 4.2), including a local
version of Theorem 6.3, are obtained by a Lyapunov�Schmidt reduction
and then by solving the so-called bifurcation equation in the finite-dimen-
sional subspace N(L&aI ).

Applying this method to the equivariant-problem (3.5), (7.4), it is well
known that one can choose an equivariant Lyapunov�Schmidt reduction
yielding a mapping F: R_N(L&aI ) � N(L&aI ) (defined only locally near
(0, 0)) which is equivariant in the sense of (7.4) as well. Defining the fixed-
point space of a subgroup 1/O(2)_O(3) in N(L&aI ) as in (7.5), the
equivariance of F(+, } ) implies that

F: R_Fix1 (N(L&aI )) � Fix1 (N(L&aI )). (7.9)
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(Recall that F is defined only locally near (0, 0)). A complete picture of all
local solutions of G(+, u)=0 near (0, 0) is then obtained from the finite-
dimensional equivariant problem F(+, v)=0. Since the isotropy of v # N(L&aI)
is the same as the isotropy of u # H2, 2m(QP) (due to the equivariant Lyapunov�
Schmidt reduction) we can apply all (local) results for the finite-dimensional
problem and transfer it to the original infinite-dimensional equation. In
particular, any local solution of G(+, u)=0 in R_(D(L) & Fix1 (H2, 2m(QP)))
is obtained by solving F(+, v)=0 in R_Fix1 (N(L&aI )). The existence of
solutions is summarized in Theorem 7.3 for the cases that dim Fix1 (N(L&aI ))
is one, odd, or arbitrary.

Remark 7.5. Locally near the bifurcation point (0, 0), the bifurcating
solutions of G(+, u)=0 in R_(D(L) & Fix1(H 2, 2m(QP))) obtained by
Theorem 7.3 have the isotropy 7u=1 if 1 is a maximal isotropy subgroup
of O(2)_O(3) in the natural representation (7.1), (7.2) on N(L&aI ),
cf. [5].

The most important class of such maximal isotropy subgroups acting on
N(L&aI ) is given by these subgroups 1 such that dim Fix1 (N(L&aI ))
=1. We take up this strategy in the next sections and we give examples of
1 yielding one-dimensional fixed-point subspaces of N(L&aI ). For that
purpose we need a few definitions in order to characterize the structure
of N(L&aI ).

We define for fixed P>0, n # N0 , and l # N0

Ul, n=span {.l, h(x) cos
2?
P

nt, .l, h(x) sin
2?
P

nt : h=&l, ..., l= , (7.10)

where the functions .l, h are given in (5.2). For later use we also define

Vl=span[.l, h(x): h=&l, ..., l]=N(A&*lI ), (7.11)

cf. (5.1), (5.2). Observe that Vl=Ul, 0 .
For the sake of a shorter notation we introduce the abbreviation

N0=N(L&aI ).
We conclude from (2.15) that N0 is the direct sum

N0= �
(l, \n) # Sa, P

Ul, n . (7.12)

Furthermore, for 1/O(2)_O(3) we have

Fix1 (N0)= �
(l, \n) # Sa, P

Fix1 (Ul, n). (7.13)
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This is a consequence of the fact, that the action of O(2)_O(3) on Ul, n

given by (7.1), (7.2) leaves Ul, n invariant. Clearly, if dim Fix1 (N0)=1,
then Fix1 (N0)/Ul1 , n1

for some (l1 , n1) # Sa, P .

8. STANDING WAVES

In this and the following sections we study (3.1) on M=S2 with A=&2.
The analogous results for (5.12), i.e., A=22, are then readily obtained. The
eigenfunctions are the same; only the parameters ``a'' and the period ``P ''
require suitable adjustment. However, the global results, presented here
and in Sections 9 and 10, hold for A=&2 only, (cf. Section 6).

Here we investigate subgroups 1/O(2)_O(3) of the form 1=Dn_7
where 7/O(3) is a subgroup. If

dim(Fix7 (Vl1
))=d for some l1 # N0 , (8.1)

then we obtain

dim(FixDn1
_7 (N0))=d for some n1 # N, (8.2)

provided ``a'' is not an eigenvalue of A (recall that N0=N(L&aI ) is given
by (7.12)). To see this, first suppose that P=P1 is the minimal period, as
given by Proposition 5.10. Then N0=Ul1 , 1 , i.e., n1=1, and D1 :=Z� 2 is the
two-element group Z� 2=[I, E], where E is the time-reversal defined in
(7.2)2 . As in (7.7), the elements of FixZ� 2_7 (N0) are, in particular, even
functions of ``t''. On the other hand, if we choose the period P1 according
to Remark 5.13, then P1 need not be minimal. In this case, it is more
convenient to work directly with the admissible period P=P0 as follows:
For all natural numbers n1 such that (l1 , n1) # Sa, P which do not divide
any other n for which (l, n) # Sa, P , we obtain

(8.3) Fix1� (N0)=Ul1 , n1
for 1� =Zn1

_[I] with the action Tn(P�n1 )u(t, x)
=u(t&n(P�n1 ), x) for Tn(P�n1 ) # Zn1

, n=0, ..., n1&1 (cf. (7.2)).

If Dn1
is generated by Zn1

as in (8.3) and by E as in (7.2)2 then (8.1)
implies (8.2).

If ``a'' is an eigenvalue of A with eigenspace Vl , then (8.2) still holds
under extra assumptions. Namely, if FixZn1

_[I](N0)=Vl�Ul1 , n1
for some

n1 # N, and if Fix7 (Vl)=[0] but dim Fix7 (Vl1
)=d, then FixDn1

_7 (N0)/
Ul1 , n1

and (8.2) holds.
Since solutions with isotropy Dn1

_7 have the spatial symmetries
characterized by 7 for all times t # R (mod P�n1) we call these solutions
standing waves.
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Subgroups 7 of O(3) having one-dimensional fixed-point subspace in
some Vl for the natural action (7.1) are of special interest. The reason for
this is clear��we then obtain a bifurcating curve of solutions [(+(=), u(=))]
with u(=)(t, x)==�(t, x)+o( |=| ) where FixDn1

_7 (N0)=span[�(t, x)] (cf.
(4.5)). The isotropy of � and that of the nonlinear wave u(=) are the same
(cf. Section 7) and for small = the pattern of u(=) is certainly close to that
of � which is known explicitely (cf. our examples below).

Fortunately a classification of all maximal isotropy subgroups 7 of O(3)
satisfying (8.1) with d=1 for some l1 # N0 is well known, cf. [5, p. 131].

We now give some explicit examples adopting the notation of [5]. For
the function h we assume the invariance (7.3) with respect to the group 7,
respectively.

I. 7=O(2)�Zc
2

The elements in Fix7 (H 2(S2)) are called axisymmetric. For convenience
we fix one copy of O(2) which leaves the x3-axis in R3 fixed. Zc

2=[\I] is
the centralizer of O(3).

For the eigenvalue *4=20 the eigenfunction of A=&2 in Fix7 (H 2(S 2))
is given by .4, 0(x)= 1

8 (35 cos4 :&30 cos2 :+3) (cf. (5.2)) and choosing
a=a(0)=4 and P=2? we find S4, 2?=[(4, \4)] and therefore (8.1) and
(8.2) are satisfied with d=1 and n1=4. Thus we obtain the kernel
FixD4_7 (N(L&aI ))=span[.4, 0(x) cos 4t] which gives a local solution
curve with u(=)(t, x)==.4, 0(x) cos 4t+o( |=| ) having isotropy D4_7. In
Fig. 1 the nodal set of .4, 0 is depicted which is not necessarily maintained
for u(=) # Fix1 (H2, 2(Q2?)), 1=D4_7. Since a=a(0) is an integer we can

FIG. 1. Nodal set of .4, 0 in example I.
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apply also Theorem 7.3 and we get a global branch CP4
, P4=2?�4, of

solutions for (5.10) in R_Fix1 (H 2, 2(Q2?)).
We also find axisymmetric solutions when ``a'' is an eigenvalue of A=&2.

This happens e.g. at a=2. Here S2, 2?=[(1, 0), (2, \2)] and from [5],
Chapter XIII, Theorem 9.9, dim Fix7 (V1)=0 and dim Fix7 (V2)=1. Hence,
we obtain a local smooth curve of P2=2?�2-periodic solutions with isotropy
D2 _7 which is different from the global branch of nontrivial stationary
solutions bifurcating from (0, 0) as well. The curve of nonstationary solu-
tions is globally extended, too, but it could meet the stationary branch.

The following subgroups 7/O(3) often involve the exceptional sub-
groups T, O, and I of SO(3), called the tetrahedral, octahedral, and
icosahedral subgroups, respectively. We now fix a copy of each of these
groups. Concerning T we choose the following: The elements of order two
send two variables to their respective negatives, and one element of order
three gives a cyclic permutation of the three variables, cf. (10.1).

For O/O(3) we choose the unique subgroup, which is a supergroup of
T as chosen above. We fix I to be the icosahedral subgroup which contains
two Z5 subgroups which rotate around the axis (0, 0, 1) and (&2�- 5, 0,
1�- 5), respectively.

II. 7=O�Zc
2

Choosing the same parameters *4=20, a=a(0)=4, P=2?, n1=4, we
get the same results as for Example I with the eigenfunction .̂4(x)=
168.4, 0(x)+.4, 4(x) (cf. (5.2)) in Fix7 (H2(S 2)). Here FixD4_7 (N(L&aI ))
=span[.̂4(x) cos 4t]. Its spatial nodal set is shown in Fig. 2.

FIG. 2. Nodal set of .̂4 in example II.
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We also find bifurcation of nontrivial periodic solutions when ``a'' is
an eigenvalue of A. E.g. let a=6, then S6, 2?=[(2, 0), (6, \6)] and (cf.
[5, Chapter XIII, Table 8.1]) dim Fix7 (V2)=0 and dim Fix7 (V6)=1.
Therefore we get a P6=(2?�6)-periodic solution curve with isotropy
D6 _7, which occurs in addition to a branch of stationary solutions. For
the global extensions of both branches the comments of Example I hold
here as well.

III. 7=I�Zc
2

Here we choose *6=42, a=a(0)=&7, P=2?, giving S&7, 2?=
[(1, \3), (6, \7)] and (8.2) applies for d=1 and n1=7. The eigenfunc-
tion in Fix7 (H2(S 2)) is given by .̂6(x)=&3960.6, 0(x)+.6, 5(x) whose
nodal set is sketched in Fig. 3. Since ``a'' is an integer, the local curve
[(+(=), u(=))], where u(=)(t, x)==.̂6(x) cos 7t+o( |=| ), is again globally
extended in R_FixD7_7 (H 2, 2(Q2?)) (cf. Theorem 7.3).

Similarly, we could choose *6=42, a=a(0)= 47
4 and P=Pmin=4?�11

(see Remark 5.12). In this second example, however, ``a'' is not an integer,
and therefore we cannot apply Theorem 6.3 or Theorem 7.3, i.e. we do not
know whether the local curve with u(=)(t, x)==.̂6(x) cos 11

2 t+o( |=| ) is
globally extended.

IV. 7=Dd
6

As dihedral group Dd
6 /O(3) we choose that one with x3 -axis as axis of

rotation. The eigenvalue *3=12 is then simple in Fix7 (H 2(S2)) and choos-
ing a=a(0)=3, P=2?, we find S3, 2?=[(3, \3)] giving a solution curve

FIG. 3. Nodal set of .̂6 in example III.
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with period P3=2?�3 and isotropy D3 _Dd
6 . The eigenfunction .3, 3(x) (see

(5.2)) is depicted in Fig. 4. The local curve is globally extended.

V. 7=O
Here we can choose the eigenvalue *9=90, a=a(0)=9, P=2?, such

that S9, 2?=[(9, \9)] and a P9=2?�9-periodic solution curve with
isotropy D9_7 bifurcates from the trivial solution. The local curve extends
to a global continuum CP9

in R_Fix1 (H2, 2(Q2?)) with 1=D9_7. The
eigenfunction of A=&2 in Fix7 (H2(S2)) is given by .̂9(x)=&4080.9, &4(x)
+.9, &8(x) (cf. (5.2)) whose nodal set is shown in Fig. 5.

VI. 7=O&

We fix O&=T _ [&#: # # O"T] with T being fixed as before.
The parameters *3=12, a=a(0)=3, P=2?, allow to apply (8.2) with

d=1 and n1=3 and we obtain a P3=(2?�3)-periodic solution curve with
isotropy D3_7. The nodal lines of the eigenfunction .3, &2(x) (see (5.2))
are depicted in Fig. 6. The local curve is globally extended.

VII. 7=I
The eigenvalue *15=240 is simple in Fix7 (H 2(S2)) and the choice of

a=a(0)=15, P=2?, gives a period P15=2?�15 since S15, 2?=[(15, \15)].
Since ``a'' is an integer Theorem 7.3 gives a global continuum. The eigenfunc-
tion .̂15(x)=&36306144000.15, &5(x)&62640.15, &10(x)+.15, &15(x) is
represented in Fig. 7.

The bifurcating nonlinear waves of the preceeding seven examples are
locally of the form u(=)(t, x)==.̂l(x) cos(2?�P) nt+o( |=| ) (in the H2, 2(QP)-
topology, where in all but one example we have P=2?). Although, by

FIG. 4. Nodal set of .3, 3 of example IV.
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FIG. 5. Nodal set of .̂9 of example V.

construction, u(=) # Fix1 (H 2, 2(QP)) with isotropy 1=Dn_7, the spatial
symmetry does not necessarily imply that the nodal curves of the eigenfunc-
tion .̂l as shown in Figs. 1�7 are preserved for u(=). In the presence of
more symmetry, however, certain nodal families are, in fact, preserved
along branches of solutions locally and globally.

FIG. 6. Zero set of .3, &2 of example VI.
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FIG. 7. Nodal set of .̂15 of example VII.

In particular, in addition to (7.3), we assume

h(+, x, &u)=&h(+, x, u) for all (+, x, u) # R_S2_R. (8.4)

We generate a group Z� 2 by the action

(&I� ) u(t, x)=&u(t, x), (t, x) # R (mod P)_S2. (8.5)

By assumptions (7.3) and (8.4) the mapping G(+, } ) is 1_Z� 2 -equivariant
in the sense of (7.4), where the action of (#, &I� ) # 1_Z� 2 on u(t, x) is
defined by (#, &I� ) u(t, x)=&(#u(t, x)), with #u(t, x) for # # 1=O(2)_O(3)
is given by (7.1) and (7.2).

Assume that

(8.6) _v=&v for all v # Fix7 (Vl) and for some reflection _=_U # O(3)
across a plane U through the origin of R3.

We remark that we have _U � 7, but usually &_U # 7. Let 7� be the subgroup
of O(3)_Z� 2 generated by 7_[I� ] and the element (_U , &I� ), where _U is
given by (8.6). Then

Fix7� (Vl)=Fix7 (Vl). (8.7)
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If dim Fix7 (Vl)=1 then *l is a simple eigenvalue of A=&2 in Fix7 (H2(S2))
and by (8.7) *l is a simple eigenvalue in Fix7� (H 2(S2)). Restricting G(+, } )
to Fix1� (H 2, 2(QP)) with 1� =Dn _7� we can apply our local and global
bifurcation theory for G(+, u)=0 as expounded before in this and the
previous section.

By definition of 1� all functions in Fix1� (H 2, 2(QP)) are invariant under
(_U , &I� ), in other words

_Uu(t, x)=&u(t, x) for all (t, x) # R(mod P)_S 2. (8.8)

Since (_U , &I� ) represents an ``inverse reflection'' of u(t, } ) (i.e., a reflection
followed by negation) across the plane U, this, in turn, implies that

(8.9) U & S2 is a nodal curve of u(t, } ) for all t # R (mod P).

We summarize:

Theorem 8.1. If dim Fix7 (Vl))=1 with eigenfunction .̂l # Fix7 (Vl)
having a nodal curve U & S2 (=a great circle on S2) such that property (8.6)
holds, then that great circle is also a nodal curve for the nonlinear wave
u(t, x) solving (5.10) locally or globally in Fix1� (H2, 2(QP)), 1� =Dn_7� .
Since 7 is contained in 7� the other symmetries are also preserved for u(t, x).

When looking at our examples, we see that property (8.6) is fulfilled only
for odd l. Indeed, when _U satisfies (8.6) we obviously have _U � 7, but the
condition _Uv=&v on Fix7 (Vl) is forced when (&I ) b _U # 7 and
(&I ) # O(3) acts as minus identity on Fix7 (Vl). Therefore (8.6) is satisfied
for all odd l and all reflections _U such that &_U # 7. For even l we have
(&I ) # O(3) acting as the identity on Fix7 (Vl), and this trick is not
possible.

Only examples IV�VII allow an odd number l. The nodal curves of the
eigenfunctions in Fix7 (Vl) for 7=Dd

6 , l=3, 7=O, l=9, 7=O&, l=3,
and 7=I, l=15 are great circles on S2 and property (8.6) can be verified.
That means that Figs. (4�7) also depict nodal circles of the nonlinear waves
u # Fix1� (H 2, 2(QP)) of (5.10) which exist globally according to Theorem 7.3
in each case. Since these nodal sets are frozen these solutions are (non-
linear) standing waves in a more restricted sense.

Remark 8.2. If a nodal curve of the corresponding eigenfunction is not
a great circle, then it need not be preserved for the nonlinear wave solution.
This is seen by the example 7=O, l=13: The nodal set of the eigenfunc-
tion in Fix7 (Vl) is depicted in Fig. 8��only the great circles are preserved.

As pointed out before, property (8.6) can be verified only for odd l. For
even l assumption (8.4) leads also to new phenomena which we describe
now.
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FIG. 8. Nodal set of an eigenfunction according to Remark 8.2.

The group O(3) is decomposed into SO(3) and Zc
2 generated by

&I # O(3), i.e. O(3)=SO(3)�Zc
2 . For the natural action (7.1) &I acts

trivially on Vl for even l, but &I� does not (cf. (8.5)). Therefore the action
of O(3)_Z� 2 on Vl for even l is the same as the minus action of SO(3)�
Zc

2 $O(3) on Vl . Fortunately for that action the subgroups of O(3) having
one-dimensional fixed-point subspaces are classified in [5, p. 129]. A new
example is the following:

FIG. 9. Nodal set of .� 6 of example VIII.
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VIII. 7=O&=T _ [(#, &I� ): # # O"T]/SO(3)_Z� 2

The eigenvalue *6=42 is simple in Fix7 (H2(S 2)) and since S&7, 2?=
[(1, \3), (6, \7)] we can choose a=a(0)=&7, P=2?, and (8.2) applies
with d=1 and n1=7. We obtain a curve of P7=2?�7-periodic solutions.
The eigenfunction in Fix7 (V6) is .� 6(x)=&792.6, 2(x)+.6, 6(x) (cf. (5.2))
whose nodal lines are depicted in Fig. 9. The local curve is globally
extended in R_Fix1 (H2, 2(Q2?)), where 1=D7 _7.

We see that the nodal curves of the eigenfunction .� 6 are great circles,
which are nonlinearly preserved, because &_U # O&, where U is a plane
spanned by, e.g., e1 and e2+e3 , where ei are the unit vectors in R3.

Remark 8.3. The action of O(3)_Z� 2 (by (7.1) and (8.5)) on Vl for
odd l is the same as the natural action of SO(3)_Z� 2$SO(3)�Zc

2 $O(3)
and no new standing waves are found by exploiting the symmetry
of Z� 2 .

9. ROTATING WAVES

Another class of solutions arises as a consequence of equivariance. In the
next two sections, we consider ``twisted'' subgroups 1/O(2)_O(3) for
which the spatial and temporal group actions are coupled. In this section
we focus on continuous twisted subgroups.

As in Section 8, the goal here is to find twisted subgroups 1 such that
dim Fix1 (N0)=1. The group-theoretic results for continuous twisted sub-
groups of S1_O(3) are well known, cf. [5, p. 401] and [14, p. 286].

In particular, the only candidates for such twisted subgroups are
(SO(2)�Zc

2)tk/O(2)_O(3), k/N, which we now describe.
The group SO(2)/O(3) is given by counter-clockwise rotations _ in

the x1x2 -plane. The so-called twist %k : SO(2) � S1/O(2) is defined as
follows: If � # [0, 2?) denotes the angle of rotation of _ # SO(2), then for
k # N,

%k(_)=T(k��2?)(P�n1 ) , (9.1)

where T} # O(2) is the time shift (mod P�n1 ) as defined in (7.2).
(As in (8.3), we have allowed for a possible reduction of the admissible

period P to P�n1 , where n1 # N.) Then, by definition,

1t

k =[(%k(_), _): _ # SO(2)]/O(2)_O(3). (9.2)
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The (natural) action of 1t

k , as introduced in (7.1), (7.2), is then as follows:

(%k(_), _) u(t, x)=u \t&
k�
2?

P
n1

, _&1x+ , (9.3)

where

cos � &sin � 0

_=\ sin � cos � 0+ for � # R(mod 2?), (t, x) # R(mod P�n1)_S 2.

0 0 1

This corresponds to a clockwise spatial rotation through an angle � about
the x3 -axis accompanied by a temporal phase shift of (k��2?)(P�n1). In
other words, functions in the fixed-point space of 1t

k rotate rigidly counter-
clockwise about the x3-axis in such a way that the spatial angle of rotation is
2?�k after one time-period P�n1 . This is, by definition, a rotating wave.

Remark 9.1. The nomenclature (SO(2)�Zc
2)tk is adopted from [14].

In definition (9.2), however, the so-called centralizer Zc
2 does not occur. If

we restrict the action (9.3) to Ul1 , n1
, then in that (natural) representation,

the group 1 t

k as defined by (9.2) is not an isotropy subgroup of
O(2)_O(3). The twist %k can be extended to SO(3)�Zc

2 such that the
action on Ul1 , n1

is the same as (9.3): if l1 is even then Zc
2 acts as the iden-

tity, if l1 is odd then a multiplication by &1 is equivalent to a time shift
of half the period P�2n1 . The result of that extension is (SO(2)�Zc

2)tk,
which is an isotropy subgroup of O(2)_O(3) acting on Ul1 , n1

. However,
the fixed-point subspaces of (SO(2)�Zc

2)tk and of 1 t

k in Ul1 , n1
are the

same. Since a distinction between even and odd l1 does not make sense for
an action on H 2, 2(QP) we retain definition (9.2).

As shown in [5, 14]

dim Fix1 k
t (Ul1 , n1

)=2 for k=1, ..., l1 , (9.4)

and it is easily verified that (in spherical coordinates)

Fix1 k
t (Ul1 , n1

)=span {Pl1 , k(cos :) cos \2?
P

n1 t&k;+ ,

Pl1 , k(cos :) sin \2?
P

n1 t&k;+= (9.5)

(cf. (5.2)). In order to reduce the dimension to one we exploit more
symmetry as follows: We define

(9.6) E� u(t, x)#u(&t, x1 , &x2 , x3) or in polar coordinates E� u~ (t, :, ;)
=u~ (&t, :, &;), : # [0, ?], ; # [0, 2?), and Z� 2=[I, E� ].
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Then, by the isotropy (9.6), the phase in Fix1k
t (Ul1 , n1

) is fixed and

(9.7) Fix1 k
t �Z� 2

(Ul1 , n1
) = span[Pl1 , k(cos :) cos((2?�P) n1 t&k;)] =

span[.l1 , k(x) cos(2?�P) n1 t+.l1 , &k(x) sin(2?�P) n1 t]#span[�� l1 , k, n1
].

Combining the groups defined by (9.2) and (9.6), viz., 1=1 t

k �Z� 2 we end
up with

(9.8) Fix1 (N0)=span[�� l1 , k, n1
] where �� l1 , k, n1

is defined in (9.7) and
where N0=N(L&aI ) is given by (7.12)

(and ``a'' is not an eigenvalue of A). Therefore Theorem 7.3 yields a local
curve of nonlinear rotating waves of (5.10) in R_Fix1 (H2, 2(QP)), which
can be globally extended if a=a(0) is an integer.

To be more precise, we need the equivariance of G(+, } ) with respect to
1=1t

k �Z� 2 . According (7.3) we assume that

h(+, _x, u)=h(+, x, u) for all _ # SO(2)�Zc
2 , x # S2, +, u # R.

(9.9)

Since SO(2)�Zc
2 contains the spatial reflection symmetry of (9.6),

Proposition 7.1 guarantees the 1-equivariance and we can restrict G(+, } )
to Fix1 (H 2, 2(QP)). The local bifurcating curve is of the form [(+(=), u(=))]
where

u(=)(t, x)==�� l1 , k, n1
(t, x)+o( |=| ) (9.10)

and o( |=| ) is a perturbation in the H2, 2(QP)-topology. According to Section
7 it has the isotropy 1. Of course we can create all local solutions u(t, x)
by arbitrary phase shifts in t. (The additional symmetry E� fixes the phase.)
Whenever a=a(0) is an integer Theorem 7.3 is applicable and the local
curve (9.10) (together with all phase shifts) is extended globally in
R_Fix1 (H2, 2(QP)).

We give two examples:

IX. 1t

1 or (SO(2)�Zc
2)t1

For a=a(0)=3, *3=12, and P=2?, we obtain (9.8) with n1=3, l1=3,
and �� 3, 1, 3(t, x)=.3, 1(x) cos 3t+.3, &1(x) sin 3t, which is depicted in
Fig. 10 for times t=0, 1

8 P3 , 2
8 P3 , and 3

8 P3 where P3=2?�3. Since k=1 the
nonlinear wave rotates counter-clockwise about 2? during one period 2?�3.
Due to Theorems 6.3 and 7.3 the local curve is extended globally as a
rotating wave.
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FIG. 10. Nodal set of �� 3, 1, 3 of example IX.

FIG. 11. Nodal set of .̂4, 3, 4 of example X.
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X. 1 t

3 or (SO(2)�Zc
2)t3

Here we choose a=a(0)=4, *4=20, and P=2?. Then (9.8) holds with
n1 = 4, l1 = 4, and the eigenfunction �� 4, 3, 4(t, x) = .4, 3(x) cos 4t +
.4, &3(x) sin 4t is shown in Fig. 11. It rotates counter-clockwise about
2? during one period ?�2. Again the local curve is globally extended in
R_Fix1 (H2, 2(Q2?)).

Figures 10 and 11 show the nodal curves of the linear wave �� l1 , k, n1
,

respectively, which could be perturbed for the nonlinear wave (9.10) given
by Theorems 4.2 or 7.3. Under the additional assumption (8.4), however,
some typical nodal lines of �� l1 , k, n1

can be preserved for the nonlinear wave
locally and globally.

For that purpose we replace (9.6) by

(9.11) E8 u(t, x)=&u(&t, x1 , &x2 , x3) or in spherical coordinates
E8 u~ (t, :, ;)=&u(&t, :, &;), : # [0, ?], ; # [0, 2?) and Z8 2=[I, E8 ].

The actions (9.3) and (9.11), imply that u~ # Fix1 k
t �Z8 2

(H2, 2(QP)) satisfies
(in spherical coordinates)

u~ (t, :, ;)=u~ \t&
k�
2?

P
n1

, :, ;&�+ ,
(9.12)

u~ (t, :, ;)=&u~ (t, :, &;).

Combining both symmetries (9.12) with the periodicity u(t+(P�n1 ), x)=
u(t, x) we obtain (in spherical coordinates)

u~ \t, :,
2?
kP

n1 t+
m?
k

+;� +=&u~ \t, :,
2?
kP

n1 t+
m?
k

&;� + ,

for all t # R \mod
P
n1+ , m # Z, ;� # R.

(9.13)

In particular, the longitudinal great circles

(9.14) (x1 , x2 , x3)=(sin : cos((2?�kP) n1t+(m?�k)), sin : sin((2?�kP)
n1t+(m?�k)), cos :) for all : # [0, ?], t # R(mod P�n1 ), m=0, ..., 2k&1, are
nodal curves on S2 for all u # Fix1 (H2, 2(QP)) where 1=1t

k �Z8 2 .

In accordance with (9.3) these nodal circles rotate rigidly about an angle
2?�k during one period P�n1 .

Assumptions (8.4) and (9.10) imply that G(+, } ) is equivariant with
respect to 1 as given in (9.14), and, we see by (9.5) that
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Fix1 (N0)=span[�8 l1 , k, n1
] where

(9.15)
�8 l1 , k, n1

(t, x)=.l1 , k(x) sin
2?
P

n1 t&.l1 , &k(x) cos
2?
P

n1t.

The local curve given by Theorem 7.3 is of the form [(+(=), u(=))] where

u(=)(t, x)==�8 l1 , k, n1
(t, x)+o( |=| ) (9.16)

is obtained from (9.10) by a phase shift about &P�4n1 . Since all local and
global nonlinear waves given by Theorem 7.3 are in Fix1 (H 2, 2(QP)) with
1 is as in (9.14), all nodal curves of �8 l, k, n1

which are longitudinal great
circles are nonlinearly preserved (for (9.16)).

Finally, an inverse reflection across the x1x2 -plane also maintains the
equator as a nodal circle for all bifurcating nonlinear waves if the eigen-
function �8 l, k, n1

has that isotropy. This is the case for Example X. Therefore
Fig. 11 shows not only the eigenfunction �8 4, 3, 4 (or �� 4, 3, 4) but it represents
also typical nodal circles of nonlinear rotating waves obtained by our local
or global bifurcation theory.

Remark 9.2. Rotating waves having spatial symmetries (which rotate)
as shown in Figs. 10 and 11, e.g., cannot be solutions of an evolution equa-
tion which is of first order in t (e.g., a parabolic equation on the sphere).
If a (periodic) solution has some spatial isotropy for any fixed time, then
the fixed-point space of that isotropy subgroup 7 of O(3), say, is invariant
for all times ``t''. (Restrict the evolution equation to that fixed-point space
and observe that the solution at some fixed time determines its evolution
for all times in a unique way.) A fixed spatial isotropy 7 is compatible with
the defining property (9.3) of a rotating wave only if 7=Zc

2 , SO(2), or
SO(2)�Zc

2 . In the cases when 7 contains SO(2), however, a rotating wave
is the same as an axisymmetric stationary wave. In this sense, genuine
rotating waves for evolution equations which are of first order in t, can
have, at most, the spatial isotropy Zc

2 . A glance at our examples shows that
rotating waves of a wave equation (which is of second order in t) can have
many spatial symmetries (which rotate rigidly).

10. DISCRETE-ROTATING WAVES

For a rotating wave, defined in the previous section, the image of the
twist is continuous, viz., S1/O(2), cf. (9.1). If, however, we define the twist
% on a finite group 7/O(3) the image is also a finite subgroup Zk . Again,
the group theoretic calculations have been carried out in [5, p. 401, and 14].
In particular, it is known that the only candidate for such a discrete twisted
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subgroup of S1_O(3) is (T�Zc
2)t, which we now describe. Here T is the

tetrahedral subgroup of O(3), which is generated by

0 1 0 &1 0 0

_1=\0 0 1+ and _2=\ 0 &1 0+ (10.1)

1 0 0 0 0 1

which are elements of order 3 and 2, respectively. We define the twist
%: T � S1/O(2) (a homeomorphism) by

%(_1)=TP�3n1
and %(_2)=T0 (cf. (7.2)) (10.2)

where we assume that we have reduced the period P to P�n1 , analogously
to (8.3). Then clearly the image of the twist is [T0 , TP�3n1

, T2P�3n1
]$Z3 and

the twisted subgroup is, by definition,

1t=[(%(_), _): _ # T]. (10.3)

The natural action of 1t is (cf. (7.1), (7.2))

(%(_), _) u(t, x)=u(t&%(_), _&1x) (10.4)

where (t, x) # R (mod P�n1)_S2.
Functions in the fixed-point space of 1t have the isotropy

u \t&
P

3n1

, x+=u(t, _1 x),

(10.5)

u(t, x)=u(t, _2 x) for (t, x) # R \mod
P
n1+_S2,

which is described as follows: A time shift of length P�3n1 (=one third of
the period) is equivalent to a rotation of the spatial variable x about
(1, 1, 1) by an angle 2?�3. For all times ``t'' the functions have the spatial
symmetry of a rotation about (0, 0, 1) (=the x3 -axis) through the angle ?.
These symmetries describe, by definition, a discrete-rotating wave. Note
that, apart from the Z2-isotropy (10.5)2 in the x1x2 -plane, functions in the
fixed-point space of 1t do not rotate rigidly: only after one-third of the
period, the same pattern, rotated by 2?�3, reappears.

A remark similar to Remark 9.1 holds here as well to explain the notation
(T�Zc

2)t, which is adopted from [14].
In particular, 1t may be employed for the purposes of fixed-point sub-

spaces of Ul1 , n1
; in [5, 14] it is shown that

dim Fix1 t(Ul1 , n1
)=2 for l1=2, 4, 5, 6, 7, 9. (10.6)
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We confine our subsequent calculations to l1=4; the other cases are
analogous. With the notation of (5.2) we obtain

Fix1 t (U4, n1
)=span {8 - 3 .4, 2(x) cos

2?
P

n1 t

+(.4, 4(x)&120.4, 0(x)) sin
2?
P

n1 t,

8 - 3 .4, 2(x) sin
2?
P

n1t

&(.4, 4(x)&120.4, 0(x)) cos
2?
P

n1 t= . (10.7)

With the following additional symmetry we reduce the dimension to one.
We define

(10.8) E� u(t, x)=u(&t, x2 , x1 , x3) or in polar coordinates E� u~ (t, :, ;)
=u~ (&t, :, (?�2)&;), : # [0, ?], ;[0, 2?), and Z� 2=[I, E� ].

Then

Fix1 t �Z� 2
(U4, n1

)=span {8 - 3 .4, 2(x) sin
2?
P

n1 t

&(.4, 4(x)&120.4, 0(x)) cos
2?
P

n1 t=
#span[�� 4, n1

]. (10.9)

Finally, combining the groups 1t (cf. (10.3)), and Z� 2 (cf. (10.8)) to
1=1t �Z� 2 we end up with

(10.10) Fix1 (N0)=span[�� 4, n1
] where �� 4, n1

is defined in (10.9) and
N0=N(L&aI ) is given by (7.12).

(We assume that ``a'' is not an eigenvalue of A.) If h has the invariance

(10.11) h(+, _x, u)=h(+, x, u) or all _ # T�Zc
2 �Zd

2 , x # S2, +, u # R,
where Zd

2 is generated by the spatial reflection of (10.8),

then G(+, } ) has the 1-equivariance for 1=1� �1t �Z� 2 . Thus we can
restrict G(+, } ) to Fix1 (H 2, 2(QP)) and an application of Theorems 4.2, 6.3,
or 7.3 gives a local curve of nonlinear discrete-rotating waves of (5.10) in
R_Fix1 (H2, 2(QP)) which is globally extended if a=a(0) is an integer. The
local curve is of the form [(+(=), u(=))] where

u(=)(t, x)==�� 4, n1
(t, x)+o( |=| ). (10.12)
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According to Section 7 it has the isotropy 1. We give an example:

XI. 1t or (T�Zc
2)t

We choose a=a(0)=4, *4=20, and P=2?. Then (10.10) holds with
n1=4 and the eigenfunction �� 4, 4 is given by (10.9) with n1=4. The zero
set of that function is shown in Fig. 12 at times t=(k�24) P4 , k=0, ..., 11,
where P4=?�2. The local curve is globally extended.

Remark 10.1. In Fig. 12 one observes more symmetry than required by
the isotropy (10.5): after four time steps, i.e. after one sixth of the period,
the same pattern reappears rotated about (1, 1, 1) by an angle 4?�3 and
multiplied by &1 (cf. (10.14) below). The reason for that additional
symmetry is that �� 4, 4 is in the fixed-point space of (T_Z� 2)t defined as
follows (for Z� 2 see (8.5)). The twist %: T_Z� 2 � S 1 is given by

%(_1 , I� )=TP�3n1
, %(_1 , &I� )=T5P�6n1

,
(10.13)

%(_2 , \I� )=T0 .

Then (T_Z� 2)t=[(%(_), _): _ # T_Z� 2], and the image of the twist is Z6 .
If the function h has only the invariance (10.11), then the nonlinear wave

(10.12) of (5.10) has only the isotropy (10.5).
However, if h satisfies in addition assumption (8.4), then G(+, } ) is also

equivariant with respect to the twisted subgroup (T_Z� 2)t. This means
that the nonlinear wave (10.12) of (5.10) has locally (and globally) the
isotropies (10.5), and in addition

u \t&
P

6n1

, x+=&u \t, _2
1x+ , for (t, x) # R \mod

P
n1+_S 2.

(10.14)

Remark 10.2. By Theorem 4.1 or 7.3, we can prove bifurcation for any
dimension of Fix1 (N0). Therefore we do not need the restriction for l1

given in (10.6). For example, choosing the parameters a=a(0)=10,
*10=110, and P=2?, then, according to (10.6), dim Fix1 t(U10, 10)>2 and
also Fix1 (N0)>1. Nonetheless we get nontrivial nonlinear discrete-rotat-
ing waves for (5.10) in R_Fix1 (H2, 2(QP)) with period P10=2?�10.

Remark 10.3. Examples I, II, X, and XI are given for the parameters
a=4 and P=2?. When applied to Example 6.6 (with that slight change of
notation) a=4 is a bifurcation point for (6.9), P=2?, of a global solution
continuum (cf. (6.12)). This global continuum contains two global continua
of standing waves (Example I, II), one global continuum of rotating waves
(Example X), and a global continuum of discrete-rotating waves (Example
XI). Any two of these continua may meet only in the intersection of the
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FIG. 12. Nodal set of �� 4, 4 of example XI.

corresponding fixed-point subspaces of R_H2, 2(Q2?). For instance, the
axisymmetric standing wave of Example I and the rotating wave of Example
X could meet at stationary axisymmetric solutions.

The same considerations hold for a=3, P=2?, in the Examples IV, VI,
and IX, and for a=&7, P=2?, in Examples III, VIII.
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11. CONCLUDING REMARKS

It is remarkable that we are able to get global bifurcation results for
(5.10) but not for (5.12). The basic reason for this is clear: in contrast to
problem (5.10) with a # Z, the inverse operator (1.3) does not regularize (is
not compact), in general, for (5.12). The underlying reason for this comes
from an innocuous difference in the characteristic equations, cf. (2.13),
(5.1). In problem (5.10) the appearance of the linear term ``l'' from the
eigenvalue (cf. (5.1)) in (2.13) plays a crucial role in the proof of compact-
ness. This allows us to combine the finite-dimensional kernel (1.2) with the
compactness of the inverse operator (1.3), cf. (6.1), (6.4). On the other
hand, the eigenvalue (l(l+1))2 appears in (2.13) for problem (5.12), and
the characteristic equation now involves merely a sum of squares of integers,
as in [6, 8]; from the former, we know that the inverse operator does not
regularize unless the kernel (1.2) is infinite-dimensional, i.e. if a=0. In this
sense the results for (5.12) are in keeping with our past results for one-
dimensional wave equations and for plate equations on two-dimensional
domains.

Finally, we mention that the general results of Sections 2�6 can be extended
to the sphere Sn for n�3. The eigenvalues of the Laplace�Beltrami operator
are given by *l=l(l+n&1) and a modification of the results of Sections 5
and 6 (including global bifurcation) is obvious. An exploitation of symmetry
would also follow along the lines of Sections 7�10, but the group theory for
O(n) for n�4 is much more involved. In particular, a classification of isotropy
subgroups of O(2)_O(n) yielding one- or two-dimensional fixed-point spaces
in the kernels N0=N(L&aI ) would need to be carried out.
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