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Abstract
This paper deals with the problems of description

of finite-amplitude standing waves in gas-filled acous-
tic resonators, where the frontal resonator walls are
of arbitrary reflection coefficients. The concrete wall-
reflection coefficients form may be connected with the
finite wall stiffness, radiation of acoustic energy from
the resonator cavity or utilization of selective absorb-
ing materials for nonlinear effects suppression. It is
assumed that the standing waves are driven by vibrat-
ing piston or by external volume force, with arbitrary
frequency of driving signal. One-dimensional model
equation of the second order is used to derive a set of
two non-homogenous Burgers equations describing two
contrapropagating waves, which are connected at the
resonator walls by the boundary conditions considered.
The equations are solved numerically in frequency do-
main.

Introduction
Provided that acoustic standing wave is driven into

high amplitude, the nonlinear effects are possible to dis-
tort originally harmonic wave and transform thus acous-
tic energy into higher harmonic components which re-
sult in heightened dissipation of acoustic energy. There
are many methods of these nonlinear effects suppres-
sion such as appropriate shape of the resonant cavity
and multifrequency driving signal, see [1], [2].

Other possibility is utilization of suitable materials at
the resonator walls which absorb energy of the higher
harmonic components or cause complying with the res-
onant condition only for the fundamental harmonics.
It is necessary to derive suitable model equation sup-
plemented with the appropriate boundary conditions to
study behaviour of the nonlinear standing waves on
these conditions.
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Figure 1: Acoustic resonator.

Model equations
The nonlinear standing waves in a cylindrical reso-

nator, see figure 1, driven by means of external force
may be described by an one-dimensional model equa-
tion in the second approximation, see [6], which has for
constant radius form
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whereϕ is a velocity potential,a(t) is driving accelera-
tion, x is spatial coordinate along the resonator body,t
is time,c0 is a small-signal sound speed,γ is the ratio of
specific heats. Hereb is the diffusity coefficient andd is
a coefficient including influence of the boundary layer
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where ρ0 is ambient density,η and ζ are shear and
bulk viscosities,κ is thermal conductivity coefficient,
cp and cV are constant pressure and volume specific
heats,ν0 = η/ρ0 is kinematic viscosity,r is the re-
sonator radius andPr is the Prandtl number.

The half-order derivative in equation (1) is defined as
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Equation (1) is written in coordinates moving with
the resonator body; acoustic velocity may be obtained
using its solution from definition of the velocity poten-
tial as
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, (4)

acoustic pressurep′ = p − p0 as
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This equation in the second approximation is derived
from the Navier-Stokes equation.

If we assume the velocity potential as two counter-
propagating waves, see [3],

ϕ(x, t) = ϕ+(t1 = µt, x1 = µx, τ+ = t − x/c0)+
+ ϕ−(t1 = µt, x1 = µx, τ− = t + x/c0), (6)

whereµ is a small dimensionsless parameter, see [3],
[4], and the driving acceleration as

a = a(t) = a+(x, τ+) + a−(x, τ−) ≈ µ2, (7)
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After neglecting terms of the orderµ3 and higher we
obtain a set of equations
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Here
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In case of the steady-state conditions, the terms with
the time derivatives can be neglected and set (10) is re-
duced to set of equations
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or written in a compact form
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For simple waves in nondissipative fluids we can
write, see [5],
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Acoustic pressure may be computed from solution of
equation (13) using the first term of the equation (15).

Numerical analysis
For purposes of numerical analysis it is convenient to

introduce non-dimensional variables
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where
ω0 =

πc0

l
is the fundamental resonant frequency for rigid-walled
resonator cavity andl is the resonator cavity length.

Non-dimensional form of equation (13) is
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For non-dimensional acoustic pressure we then obtain
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π
. (18)

The driving is assumed to be periodic, so acoustic
quantities can be expanded into Fourier series
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After substituting the series (19) into set (17), we ob-
tain
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If we assume the acoustic pressure reflection coeffi-
cients, see [5], atX = 0 andX = 1 to beR0 = R0(ω)
andR1 = R1(ω), with respect to (11), we can write
boundary conditions for acoustic velocity in form

X = 0 : (21a)
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Set of ODEs (20) is solved numerically by means of
the Runge-Kutta method of the 4th order, the two-point
boundary value problem (21) is solved using the shoot-
ing method.

Non-dimensional acoustic velocity spectra compo-
nents may be expressed as
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Numerical results
The following figures present some numerical re-

sults. For all cases the resonator cavity is filled with
room-conditions air, the resonator lengthl = 15 cm,
non-dimensional accelerationA = 5 × 10−4, GTV =
10−2, D = 0.

The figure 2 shows the comparison of numerical re-
sults obtained from Eqs. (13)+(15), and (1)+(5). Here
Ω = 1 andR0 = R1 = 1. The agreement of the numer-
ical results obtained is evident, the algorithm for Eq.
(13) numerical solution is faster, more stable and it is
possible to process more harmonic components. It is
also unnecessary to use so high additional-viscosity co-
efficientGTV , see [1].
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Figure 2: Comparison of numerical results. Red lines
belong to solution of Eqs. (13)+(15), the blue lines to

Eqs. (1)+(5).
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Figure 3: Distribution of acoustic pressure and
velocity spectra forR0 = 1, R1 = −1.

The figure 3 shows the acoustic pressure and veloc-
ity spectra distribution in case ofR0 = 1, R1 = −1
andΩ = 1.5 (resonance condition for the fundamental
harmonics). It can be seen that higher harmonics are
suppressed and the first harmonic component is of high
amplitude in comparison with the case of the figure 2.
This can be explained by effect of the “time-reversal re-
flection”, see [7]. Wave traveling towards the wall with
the reflection coefficientR1 = −1 is distorted due to
acoustic nonlinearities and it goes back to non-distorted
form after the reflection.

The figure 4 shows the model case where all the
energy of the higher harmonics is absorbed by the re-
sonator boundaries. HereΩ = 1, R0 = R1 = 1 for
the fundamental harmonics andR0 = R1 = 0 for the
higher ones.
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Figure 4: Distribution of acoustic pressure and
velocity spectra forR0 = R1 = 1 for the fundamental

harmonics andR0 = R1 = 0 for the higher ones.
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[6] M. Bednařı́k, M. Červenka, “Nonlinear Waves in
Resonators”, Nonlinear Acoustics at the Turn of
the Millenium”, Institute of Physics, pp. 165-168,
2000.

[7] M. Tanter, J.-L. Thomas, F. Coulouvrat, M. Fink,
“Breaking of time reversal invariance in nonlinear
acoustics ”, Physical Review E, vol. 64, no. 1, pp.
016602/1-7, 2001.

WCU 2003, Paris, september 7-10, 2003

1286


